

Gröbner Base Based Cryptanalysis of SHA-1

Makoto Sugita
IPA Security Center
Joint work with Mitsuru Kawazoe (Osaka
Prefecture university) and Hideki Imai (Chuo
University and RCIS, AIST)

Wang's attack, nonlinear code and Gröbner basis

 Wang's attack can be considered as decoding problem of nonlinear code.

Wang's attack

Outline of the attack.

- Find differential paths characteristics (difference for subtractions modular 2³²)
- Determine certain sufficient conditions
- For randomly chosen M, apply the message modification techniques
- However, not all information is published
 - How to find such differential path (disturbance vector)?
 - Candidates are too many
 - How to determine sufficient conditions?
 - What is multi-message modification?
 - Details are unpublished

Many details are not public!!

- 1. How to find the differentials?
- 2. How to determine sufficient conditions on a_i ?
- 3. What are the details of message modification technique?

=>

We have clarified 2 and 3, and partially 1

Our Contribution:

- Developing the searching method for 'good' message differentials
- Developing the method to determine sufficient conditions
- Developing new multi-message modification technique
 - Proposal of a novel message modification technique employing the Gröbner base based method

Wang's attack and nonlinear code

- Wang's attack is decoding a nonlinear code {a_i, m_i} in GF(2)^{32x80x2}.
 - Satisfying sufficient conditions
 - Satisfying nonlinear relations between a and m

```
m_i = (m_{i-3} \oplus m_{i-8} \oplus m_{i-14} \oplus m_{i-16}) \ll 1
for i = 16, \dots, 79, where x \ll n denotes n-bit left
rotation of x. Using expanded messages, for i =
1, 2, \cdots, 80,
     a_i = (a_{i-1} \ll 5) + f_i(b_{i-1}, c_{i-1}, d_{i-1}) + e_{i-1} + m_{i-1} + k_i
     b_{i} = a_{i-1}
     c_i = b_{i-1} \ll 30
     d_i = c_{i-1}
     e_i = d_{i-1}
where initial chaining value IV = (a_0, b_0, c_0, d_0, e_0)
```

is (0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476,

0xc3d2e1f0).

How to decode nonlinear code?

- A general method
 - Gröbner bases based algorithm
- Difficult to calculate Gröbner basis directly:
 - System of equations is very complex
- How to decode?
 - Employ Gröbner base based method
 - Employ techniques of error correcting code
 - Note: Nonlinear relations between a and m can be linearly approximated

Control sequence

Control sequence represents Gröbner base

Control	Control	Controlled relation r_i
sequence	bit	
s_i	b_i	
^s 120	$a_{16,31}$	$m_{15,31} = 1$
^s 119	$a_{16,29}$	$m_{15,29} = 0$
s118	$a_{16,28}$	$m_{15,28} + m_{10,28} + m_{8,29} + m_{7,29} + m_{4,28}$
		$+m_{2,28}=1$
^s 117	$a_{16,27}$	$m_{15,27} + m_{14,25} + m_{12,28} + m_{12,26} + m_{10,28} + m_{9,27}$
	,	$+m_{9,25}+m_{8,29}+m_{8,28}+m_{7,28}+m_{7,27}+m_{6,26}$
		$+m_{5,28}+m_{4,26}+m_{3,25}+m_{2,28}+m_{1,25}+m_{0,28}=1$
s116	a16,26	$m_{15,26} + m_{10,28} + m_{10,26} + m_{8,28} + m_{8,27} + m_{7,27}$
	,	$+m_{6,29}+m_{5,27}+m_{4,26}+m_{2,27}+m_{2,26}+m_{0,27}=1$
s115	$a_{16,25}$	$m_{15,25} + m_{11,28} + m_{10,27} + m_{10,25} + m_{9,28} + m_{8,27}$
	,	$+m_{8,26}+m_{7,26}+m_{6,29}+m_{6,28}+m_{5,26}+m_{4,25}$
		$+m_{3,28}+m_{2,28}+m_{2,26}+m_{2,25}+m_{1,28}+m_{0,28}$
		$+m_{0,26}=0$
s114	$a_{16,24}$	$m_{15,24} + m_{12,28} + m_{11,27} + m_{10,26} + m_{10,24} + m_{9,28}$
	,	$+m_{9,27}+m_{8,29}+m_{8,26}+m_{8,25}+m_{7,25}+m_{6,29}$
		$+m_{6,28}+m_{6,27}+m_{5,25}+m_{4,28}+m_{4,24}+m_{3,28}$
		$+m_{3,27}+m_{2,27}+m_{2,25}+m_{2,24}+m_{1,28}+m_{1,27}$
		$+m_{0,27}+m_{0,25}=1$
s ₁₁₃	a16,23	$m_{15,23} + m_{12,28} + m_{12,27} + m_{11,26} + m_{10,25}$
	,	$+m_{10,23}+m_{9,27}+m_{9,26}+m_{8,28}+m_{8,25}+m_{8,24}$
		$+m_{7,29}+m_{7,24}+m_{6,28}+m_{6,27}+m_{6,26}+m_{5,24}$
		$+m_{4,27}+m_{4,23}+m_{3,27}+m_{3,26}+m_{2,26}+m_{2,24}$
		$+m_{2,23}+m_{1,27}+m_{1,26}+m_{0,26}+m_{0,24}=1$
s112	$a_{16,22}$	$m_{15,22} + m_{14,25} + m_{12,28} + m_{12,27} + m_{11,25}$

Neutral bit

- Introduced by Biham and Chen
- Some bits do not affect relations
 - Increase the probability of collision

Semi-neutral bit

- We introduce new notion 'Semi-neutral bit'
- Change of some bits can easily be adjusted in a few steps of control sequence
 - Which means that noise on semi-neutral bits can be easily decoded

Sufficient conditions and new message modification techniques

chaining	
variable	31 - 24 23 - 16 15 - 8 8 - 0
a_0	01100111 01000101 00100011 00000001
a_1	101VvV Y1-a10aa
a_2	01100vVv0a 1-w00010
a_3	0010Vv -101a0- 0aX1a0W0
a_4	11010vv01 01aaa 0W10-100
a_5	10w01aV1-01-aa00100- 0w01W1
a_6	11W-0110 -a-1001- 01100010 1-a111W1
a_7	w1x-1110 a1a1111101-001 10-10
a_8	h0Xvvv10 0000000a a001a1 100X0-1h
a_9	00XVrr-V 11000100 00000000 101-1-15
a ₁₀	Ow1-rv-v 11111011 11100000 00hW0-1h
a ₁₁	1w0V-V1 01111110 11x0Y
a_{12}	Ow1-rV-V1XWa-Wh
a ₁₃	1w0vvrr1-qq01y
a_{14}	1rhhvvVh hh qNNNNNqN N1hhh1hh
a ₁₅	OrwhhhVh hhhhN qNNqqNqN NNhhOhhC
a ₁₆	W1whhhhh hhqNqNqN NNqNNqqq qWWhahhh
a ₁₇	-0100-
a ₁₈	1-100-
0.10	(

1, 0, a: Wang's sufficient conditions

w: adjust $a_{i+1,j}$ so that $m_{i,j} = 0$ W: adjust $a_{i+1,j}$ so that $m_{i,j} = 1$

v: adjust $a_{i,j-5}$ so that $m_{i,j} = 0$ V: adjust $a_{i,j-5}$ so that $m_{i,j} = 1$

N semi-neutral bit

Proposal of the method to determine sufficient conditions and new message modification technique using Gröbner basis

IPA

New collision example of 58-step SHA-1

M = 0x

1ead6636 319fe59e 4ea7ddcb c7961642 0ad9523a f98f28db 0ad135d0 e4d62aec 6c2da52c 3c7160b6 06ec74b2 b02d545e bdd9e466 3f156319 4f497592 dd1506f93

M' = 0x

ead6636 519fe5ac 2ea7dd88 e7961602 ead95278 998f28d9 8ad135d1 e4d62acc 6c2da52f 7c7160e4 46ec74f2 502d540c 1dd9e466 bf156359 6f497593 fd150699

 Note that the proposed method is the first fully-published method that can cryptanalyze 58-round SHA-1

Cryptanalysis of 58-round SHA-1

- We can achieve all message conditions and 8 chaining value conditions in 17 – 23 round (success probability is 0.5)
- 29 conditions remained
 - > exhaustive search (2²⁹ message modification)
- Constant is practical?
 - Utilization of Groebner base based method
 - 2²⁹ message modification -> 2⁸ message modification (symbolic computation)
 - However, complexity is exactly same
 - 2²⁹ SHA-1 -> 2²⁹ SHA-1
 - Complexity can be reduced employing a suitable technique of error correcting code and Groebner basis?

Using Groebner base based method (Algorithm 3)

chaining	l			
variable	31 - 24	23 - 16	15 - 8	8 - 0
a_0	01100111	01000101	00100011	00000001
a_1	101VvV	Y		-1-a10aa
a_2			a	
a_3	0010Vv	-101a	0-	0aX1a0W0
a_4	11010vv-	-01	01aaa	OW10-100
a_5	10w01aV-	-1-01-aa	00100-	Ow01W1
a_6	11W-0110	-a-1001-	01100010	1-a111W1
a_7	w1x-1110	a1a1111-	-101-001	10-10
a_8	h0Xvvv10	0000000a	a001a1	100X0-1h
a_9	l		00000000	
a_{10}	0w1-rv-v	11111011	11100000	00hW0-1h
a ₁₁	1w0V-V	1	01111110	11x0Y
a_{12}	0w1-rV-V			-1XWa-Wh
a ₁₃				
a_{14}	1rhhvvVh	hh	qNNNNNqN	N1hhh1hh
a_{15}	OrwhhhVh	hhhhN	qNNqqNqN	NNhh0hh0
a_{16}	W1whhhhh	hhqNqNqN	NNqNNqqq	qWWhahhh
a ₁₇	-0			100-
a ₁₈	1-1			00-
0.10				0

Problem to determine semi-neutral bits denoted as 'N' is equivalent to calculating Groebner basis from algebraic equations on variable denoted as 'q' or 'N'

Calculation of Groebner basis

A message differential of full SHA-1 slightly different from Wang's (first iteration)

	$\Delta^{\pm}m$	Δ^+_m	$\Delta^{-}m$
i = 0	a0000003	00000001	a0000002
i = 1	20000030	20000020	00000010
i = 2	60000000	60000000	00000000
i = 3	e000002a	40000000	a000002a
i = 4	20000043	20000042	00000001
i = 5	b0000040	a0000000	10000040
i = 6	d0000053	d0000042	00000011
i = 7	d0000022	d0000000	00000022
i = 8	20000000	00000000	20000000
i = 9	60000032	20000030	40000002
i = 10	60000043	60000041	00000002
i = 11	20000040	00000000	20000040
i = 12	e0000042	c0000000	20000042
i = 13	60000002	00000002	60000000
i = 14	80000001	00000001	80000000
i = 15	00000020	00000020	00000000
i = 16	00000003	00000002	00000001
i = 17	40000052	00000002	40000050
i = 18	40000040	00000000	40000040
i = 19	e0000052	00000002	e0000050
i = 20	a0000000	00000000	a0000000
i = 21	80000040	80000000	00000040
i = 22	20000001	00000001	20000000
. 00	20000000	0000000	20000000

	$\Delta^{\pm}a$	Δ^+a	$\Delta^{-}a$
i = 0	00000000	00000000	00000000
i = 1	e0000001	a0000000	40000001
i = 2	20000004	20000000	00000004
i = 3	c07fff84	803fff84	40400000
i = 4	800030e2	800010a0	00002042
i = 5	084080b0	08008020	00400090
i = 6	80003a00	00001a00	80002000
i = 7	0fff8001	08000001	07ff8000
i = 8	00000008	80000000	00000000
i = 9	80000101	80000100	00000001
i = 10	00000002	00000002	00000000
i = 11	00000100	00000000	00000100
i = 12	00000002	00000002	00000000
i = 13	00000000	00000000	00000000
i = 14	00000000	00000000	00000000
i = 15	00000001	00000001	00000000
i = 16	00000000	00000000	00000000
i = 17	80000002	80000002	00000000
i = 18	00000002	00000002	00000000
i = 19	80000002	80000002	00000000
i = 20	00000000	00000000	00000000
i = 21	00000002	00000002	00000000
i = 22	00000000	00000000	00000000
/ 00	0000000	0000000	0000000

Sufficient conditions for the full SHA-1 (first iteration)

message	
variable	31 - 24 23 - 16 15 - 8 8 - 0
m_0	1-110
m_1	001
m_2	-00
m_3	1011-1-1-
m_4	0001
m_{5}	0-011
m_6	00-00-101
m_7	00-0
m_8	1
m_9	-10001-
m_{10}	-00010
m_{11}	11
m_{12}	0011-
$^{m}13$	-110-
m_{14}	10
$^{m}_{15}$	
$^{m}_{16}$	01
$^{m}_{17}$	-11-10-
$^{m}_{18}$	-11
m_{19}	1111-10-
m_{20}	1-1
m_{21}	01
m_{22}	1
m_{23}	111

chaining				
variable	31 - 24	23 - 16	15 - 8	8 - 0
a_0	01100111	01000101	00100011	0000001
a_1	0100	-0-01-0-	10-0-10-	a0101
a_2	-1001	0aa10a1a	01a1a011	1a11a1
a_3	01011	-1000000	00000000	01a0a1
a_4	0-101a	10000	00101000	01010
a_{5}	0-0101-1	-1-11110	00111-00	10010100
a_6	1-0a1a0a	a0a1aaa-	10010-	01-0
a_7	0-0111	11111111	111-010-	0-0-0110
a_8	-1001	11110000	010-111-	1000-
a_9	0011	11111111	1110	1-01
a_{10}			a	
a_{11}	100		1	
a_{12}				-10-
a_{13}	0			
a_{14}	1			1
a_{15}				0
a_{16}	-1			1-A-
a_{17}	00			0-0-
a_{18}	1-1			a-0-
a ₁₉	0-b			0-
a ₂₀	0			a
a_{21}	b			0-
a_{22}				aa
a_{23}				00

Control sequence of full SHA-1 (first iteration)

ctrl. seq.	control bits	controlled relation
s168	$a_{15,8}$	$a_{30,2} + a_{29,2} = 1$
s167	$a_{16,6}$	$a_{26,2} + a_{25,2} = 1$
s166	$a_{15,7}$	$a_{25,3} + a_{24,3} = 0$
s 165	$a_{13,7}$	$a_{24,3} + a_{23,3} = 0$
s164	$a_{13,9}$	$a_{23,0} = 0$
s163	$a_{16,10}$	$a_{22,3} + a_{21,3} = 0$
s162	$a_{16,11}$	$a_{21,29} + a_{20,31} = 0$
s161	$a_{16,8}$	$a_{21,1} = 0$
s160	$a_{16,9}$	$a_{20,29} = 0$
⁸ 159	$a_{15,10}$	$a_{20,3} + a_{19,3} = 0$
s158	$a_{15,11}$	$a_{19,31} = 0$
s 157	$a_{15,9}$	$a_{19,29} + a_{18,31} = 0$
s156	$a_{14,8}$	$a_{19,1} = 0$
s ₁₅₅	$a_{14,11}$	$a_{18,31} = 1$
s ₁₅₄	$a_{15,14}$	$a_{18,29} = 1$
s153	$a_{13,8}$	$a_{18,1} = 0$
s152	$a_{13,11}$	$a_{17,31} = 0$
s151	$a_{13,10}$	$a_{17,30} = 0$
s ₁₅₀	$a_{13,13}$	$a_{17,1} = 0$
s149	$a_{16,31}$	$m_{15,31} = 0$
s148	$a_{16,29}$	$m_{15,29} = 1$
s147	$a_{16,28}$	$m_{15,28} + m_{10,28} + m_{4,28} + m_{2,28} = 0$
s146	$a_{16,27}$	$m_{15,27} + m_{10,27} + m_{8,28} + m_{4,27} + m_{2,28} + m_{2,27} + m_{0,28} = 1$
s 145	$a_{16,26}$	$m_{15,26} + m_{10,28} + m_{10,26} + m_{8,28} + m_{8,27} + m_{7,27} + m_{5,27} + m_{4,26} + m_{2,27} + m_{2,26} +$
		$m_{0,27} = 0$
s144	$a_{16,25}$	$\begin{array}{l} m_{15,25} + m_{11,28} + m_{10,27} + m_{10,25} + m_{9,28} + m_{8,27} + m_{8,26} + m_{7,26} + m_{5,26} + \\ m_{4,25} + m_{3,28} + m_{2,28} + m_{2,26} + m_{2,25} + m_{1,28} + m_{0,28} + m_{0,26} = 0 \end{array}$
s143	$a_{16,24}$	$m_{15,24} + m_{12,28} + m_{11,27} + m_{10,26} + m_{10,24} + m_{9,28} + m_{9,27} + m_{8,26} + m_{8,25} +$
		$m_{7,25} + m_{6,27} + m_{5,25} + m_{4,28} + m_{4,24} + m_{3,28} + m_{3,27} + m_{2,27} + m_{2,25} + m_{2,24} +$
		$m_{1,28} + m_{1,27} + m_{0,27} + m_{0,25} = 1$
s142	$a_{16,23}$	$m_{15,23} + m_{12,28} + m_{12,27} + m_{11,26} + m_{10,25} + m_{10,23} + m_{9,27} + m_{9,26} + m_{8,28} + m_{10,28} + m_{10,2$
		$m_{8,25} + m_{8,24} + m_{7,24} + m_{7,0} + m_{6,27} + m_{6,26} + m_{5,24} + m_{4,27} + m_{4,23} + m_{3,27} + m_{3,26} + m_{2,26} + m_{2,24} + m_{2,23} + m_{1,30} + m_{1,27} + m_{1,26} + m_{1,0} + m_{0,26} + m_{0,24} = 0$

Advanced sufficient conditions and semi-neutral bits of full-round SHA-1

message	
variable	31 - 24 23 - 16 15 - 8 8 - 0
m_0	1-110
m_1	L-001
m_2	L00L
m_3	1011-1L
m_4	LLO001
m_{5}	OLO11L
m_6	00L00-101
m_7	00-01L1-
m_8	L-1LL
m_{9}	L1000-L1L
$^{m}_{10}$	L00OLLL10
m_{11}	LL11LLLLLL
m_{12}	0011LLL-1L
$^{m}13$	L11LLLLL LLLLLLL L-LLLLLOL
m_{14}	1LLLLLL LLLLLLL L-LLLLLLLO
$^{m}_{15}$	LLLLLLL LLLLLLL LL-L L-OLLLLL
$^{m}_{16}$	01
m_{17}	-11-10-
$^{m}18$	-11
m_{19}	1111-10-
m_{20}	1-1
$^{m}21$	01
m_{22}	10
$^{m}23$	111
m_{2A}	11

chaining				
variable	31 - 24	23 - 16	15 - 8	8 - 0
<i>a</i> ₀	01100111	01000101	00100011	00000001
a_1	010-FrF0	y0-01-0-	10-0-10-	F-Fa0101
a_2	F100-Vv1	0aa10a1a	01a1a011	1-wa11a1
a_3	01011VFV	-1000000	00000000	01FFa0a1
a_4	0w101v-a	y10000	00101000	010XWF10
a_5	0w0101y1	V1-11110	00111-00	10010100
a ₆	1w0a1a0a	a0a1aaa-	10010F	-W01F0Fh
a ₇	ww0w0111	11111111	111-010F	0w0W0110
a ₈	w10wvv01	11110000	010-111F	1-Wh000F
<i>a</i> 9	00WV11	11111111	1110	F1F01
a ₁₀	W11x-Vvv		a	-1ww1h0w
a ₁₁	100V		1	-1hh0hWw
a_{12}	wwWF-v			-1hhhh0h
a ₁₃	OMMA-	-F-F-F	FNqNqqqq	q1hhh0WW
a_{14}	1WWhhhhh	hhhhhhhh	hNhNqNNq	NNhhh1wh
a ₁₅	WWwhhhhh	hhhhhhhh	hqhhqqqq	qNwh0hh0
a ₁₆	w1Whhhhh	hhhhhhhh	hhNhqqqq	hqwh1hAh
a ₁₇	00			0-0-
^a 18	1-1			a-0-
a ₁₉	0-ъ			0-
a ₂₀	0			a
a ₂₁	р			0-
a_{22}				aa
a_{23}				00
a24	-c			a

Cryptanalysis of full-round SHA-1 (first iteration)

- We can achieve all message conditions and all chaining variable conditions in 17 – 26 round
- 64 conditions remained
 - > exhaustive search (2⁶⁴ message modification)
- Constant is practical?
 - Utilization of Groebner base based method
 - 2⁶⁴ message modification -> 2⁵¹ message modification (symbolic computation)
 - However, total complexity is still same
 - Complexity can be reduced employing a suitable technique of error correcting code and Groebner basis?

Example which satisfies sufficient conditions until 28-th round

M = 0x

aa740c82 9f91e819 84c3e50f a898306b 1e5b4111 1867d96b 0616ea95 014a2f32 7ae92980 d5e4d6c6 9d49d0ba 3b8087d3 32717277 edcec899 dc537498 63bca615

 The above M satisfies all message conditions of 0-80 rounds and all chaining variable conditions of 0-28 rounds

Gröbner cryptanalysis of SHA-1

- Gröbner base based cryptanalysis (simplification of Wang's attack) of SHA-1 can be easily implemented by everyone
 - Everyone can evaluate the complexity accurately
 - Everyone can easily evaluate the immunity of SHA-2 against Gröbner base based attack (or Wang's attack)
 - Everyone can propose new algorithms immune to our attack (or Wang's attack)

(Near) Future Work

- Find the collision of full-round SHA-1
 - Use Gröbner base based cryptanalysis
 - As an improvement of Wang's attack
 - Community of symbolic computation has so many good techniques
 - Wang (probably) does not use such techniques e.g. iterative decoding, list decoding, Sudan algorithm, Groebner basis based method

Question:

Who and when will find the collision of full-round SHA-1?

- My (only personal, not public) conjecture
 - Someone in the crypto community or the community of symbolic computation
 - In a few years, not in 10 years as NIST considers

Future work: Application to SHA-2

- Finding good sufficient conditions
 - Difficult to find?
 - Hint: Sufficient conditions do not need to be linear relations on $\{m_{ij}\}$ or $\{a_{ij}\}$
- Once good sufficient conditions are determined, problems are degenerated into symbolic computation